The Khovanov-lauda 2-category and Categorifications of a Level Two Quantum Sl(n) Representation
نویسندگان
چکیده
We construct 2-functors from a 2-category categorifying quantum sl(n) to 2-categories categorifying the irreducible representation of highest weight 2ωk.
منابع مشابه
The Khovanov-Lauda 2-Category and Categorifications of a Level Two Quantum n Representation
We construct 2-functors from a 2-category categorifying quantum sl n to 2-categories categorifying the irreducible representation of highest weight 2ω k .
متن کاملsl3-Foams and the Khovanov-Lauda categorification of quantum slk.
sl 3-Foams and the Khovanov-Lauda categorification of quantum sl k. Abstract In this paper I define certain interesting 2-functors from the Khovanov-Lauda 2-category which categorifies quantum sl k , for any k > 1, to a 2-category of universal sl 3 foams with corners. For want of a better name I use the term foamation to indicate those 2-functors. I conjecture the existence of similar 2-functor...
متن کامل2 00 3 Categorifications of the colored Jones polynomial
The colored Jones polynomial of links has two natural normalizations: one in which the n-colored unknot evaluates to [n + 1], the quantum dimension of the (n + 1)-dimensional irreducible representation of quantum sl(2), and the other in which it evaluates to 1. For each normalization we construct a bigraded cohomology theory of links with the colored Jones polynomial as the Euler characteristic.
متن کاملCategorified quantum sl(2) and equivariant cohomology of iterated flag varieties
A 2-category was introduced in math.QA/0803.3652 that categorifies Lusztig’s integral version of quantum sl(2). Here we construct for each positive integer N a representation of this 2-category using the equivariant cohomology of iterated flag varieties. This representation categorifies the irreducible (N + 1)-dimensional representation of quantum sl(2).
متن کاملA categorification of quantum sl(2)
We categorify Lusztig’s U̇ – a version of the quantized enveloping algebra Uq(sl2). Using a graphical calculus a 2-category U̇ is constructed whose split Grothendieck ring is isomorphic to the algebra U̇. The indecomposable morphisms of this 2-category lift Lusztig’s canonical basis, and the Homs between 1-morphisms are graded lifts of a semilinear form defined on U̇. Graded lifts of various homomo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009